View In:
ArcGIS JavaScript
ArcGIS Online Map Viewer
ArcGIS Earth
ArcGIS Pro
Service Description: A changing climate and its effects on ecosystem services will have broad impacts, however, not all people and communities will be equally affected. This assessment of vulnerability is concerned with identifying communities and geographic areas where climate-change-driven ecological changes have the potential to adversely affect human well-being due to changes in the provision of ecosystem services. Communities that are at greater risk of ecological changes and that lack adaptive capacity are considered more vulnerable. We analyzed vulnerability components of exposure, sensitivity, and adaptive capacity based on available socioeconomic and ecological data. Reporting here includes quantitative and spatially based summaries on community risk, resource sector dependence, and capacity to adapt, as well as an integration of the three vulnerability components. This report extends existing vulnerability reporting focused on national forests by assessing all lands, regardless of ownership, in Arizona and New Mexico.
Vulnerability in the Triepke et al. (2019) study is defined as how likely the predominant vegetation is to change under future climate. Vulnerability to climate change was categorized as low, moderate, high, and very high likelihood of change, according to the difference between historic and future climate. The original dataset segments all lands into ecological response units (ERUs)—a classification of lands into 26 ecosystem types (for example, spruce-fir forest, ponderosa pine forest, Juniper grass, semi-desert grassland, sagebush shrubland) to provide a fine subregional landscape analysis. Each ERU is assigned a vulnerability classification and an uncertainty classification based on the agreement of their modeling projections.
The polygon geospatial layer was summarized as the percentage of each geography (e.g. census tract) with high or very high likelihood of vegetative change when uncertainty is low or moderate. Calculation using Triepke, F. J., E. H. Muldavin, and M. M. Wahlberg. 2019. Using climate projections to assess ecosystem vulnerability at scales relevant to managers. Ecosphere 10(9):e02854. 10.1002/ecs2.2854
Map Name: r03_SEVA_Census_Tract_01
Legend
All Layers and Tables
Dynamic Legend
Dynamic All Layers
Layers:
Description: A changing climate and its effects on ecosystem services will have broad impacts, however, not all people and communities will be equally affected. This assessment of vulnerability is concerned with identifying communities and geographic areas where climate-change-driven ecological changes have the potential to adversely affect human well-being due to changes in the provision of ecosystem services. Communities that are at greater risk of ecological changes and that lack adaptive capacity are considered more vulnerable. We analyzed vulnerability components of exposure, sensitivity, and adaptive capacity based on available socioeconomic and ecological data. Reporting here includes quantitative and spatially based summaries on community risk, resource sector dependence, and capacity to adapt, as well as an integration of the three vulnerability components. This report extends existing vulnerability reporting focused on national forests by assessing all lands, regardless of ownership, in Arizona and New Mexico.
Vulnerability in the Triepke et al. (2019) study is defined as how likely the predominant vegetation is to change under future climate. Vulnerability to climate change was categorized as low, moderate, high, and very high likelihood of change, according to the difference between historic and future climate. The original dataset segments all lands into ecological response units (ERUs)—a classification of lands into 26 ecosystem types (for example, spruce-fir forest, ponderosa pine forest, Juniper grass, semi-desert grassland, sagebush shrubland) to provide a fine subregional landscape analysis. Each ERU is assigned a vulnerability classification and an uncertainty classification based on the agreement of their modeling projections.
The polygon geospatial layer was summarized as the percentage of each geography (e.g. census tract) with high or very high likelihood of vegetative change when uncertainty is low or moderate. Calculation using Triepke, F. J., E. H. Muldavin, and M. M. Wahlberg. 2019. Using climate projections to assess ecosystem vulnerability at scales relevant to managers. Ecosphere 10(9):e02854. 10.1002/ecs2.2854
Copyright Text: Triepke, F. J., E. H. Muldavin, and M. M. Wahlberg. 2019
Spatial Reference:
PROJCS["North_America_Lambert_Conformal_Conic",GEOGCS["GCS_North_American_1983",DATUM["D_North_American_1983",SPHEROID["GRS_1980",6378137.0,298.257222101]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTION["Lambert_Conformal_Conic"],PARAMETER["False_Easting",0.0],PARAMETER["False_Northing",0.0],PARAMETER["Central_Meridian",-108.0],PARAMETER["Standard_Parallel_1",32.0],PARAMETER["Standard_Parallel_2",36.0],PARAMETER["Latitude_Of_Origin",0.0],UNIT["Meter",1.0]]
Single Fused Map Cache: false
Initial Extent:
XMin: -695475.879633749
YMin: 3585159.823611643
XMax: 521788.51493374456
YMax: 4427322.8639883585
Spatial Reference: PROJCS["North_America_Lambert_Conformal_Conic",GEOGCS["GCS_North_American_1983",DATUM["D_North_American_1983",SPHEROID["GRS_1980",6378137.0,298.257222101]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTION["Lambert_Conformal_Conic"],PARAMETER["False_Easting",0.0],PARAMETER["False_Northing",0.0],PARAMETER["Central_Meridian",-108.0],PARAMETER["Standard_Parallel_1",32.0],PARAMETER["Standard_Parallel_2",36.0],PARAMETER["Latitude_Of_Origin",0.0],UNIT["Meter",1.0]]
Full Extent:
XMin: -639874.6525000036
YMin: 3684059.8849
XMax: 466187.2877999991
YMax: 4328422.802700002
Spatial Reference: PROJCS["North_America_Lambert_Conformal_Conic",GEOGCS["GCS_North_American_1983",DATUM["D_North_American_1983",SPHEROID["GRS_1980",6378137.0,298.257222101]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTION["Lambert_Conformal_Conic"],PARAMETER["False_Easting",0.0],PARAMETER["False_Northing",0.0],PARAMETER["Central_Meridian",-108.0],PARAMETER["Standard_Parallel_1",32.0],PARAMETER["Standard_Parallel_2",36.0],PARAMETER["Latitude_Of_Origin",0.0],UNIT["Meter",1.0]]
Units: esriMeters
Supported Image Format Types: PNG32,PNG24,PNG,JPG,DIB,TIFF,EMF,PS,PDF,GIF,SVG,SVGZ,BMP
Document Info:
Title: Socioeconomic Vulnerability Census to Ecological Changes in the Southwest
Author:
Comments: A changing climate and its effects on ecosystem services will have broad impacts, however, not all people and communities will be equally affected. This assessment of vulnerability is concerned with identifying communities and geographic areas where climate-change-driven ecological changes have the potential to adversely affect human well-being due to changes in the provision of ecosystem services. Communities that are at greater risk of ecological changes and that lack adaptive capacity are considered more vulnerable. We analyzed vulnerability components of exposure, sensitivity, and adaptive capacity based on available socioeconomic and ecological data. Reporting here includes quantitative and spatially based summaries on community risk, resource sector dependence, and capacity to adapt, as well as an integration of the three vulnerability components. This report extends existing vulnerability reporting focused on national forests by assessing all lands, regardless of ownership, in Arizona and New Mexico.
Vulnerability in the Triepke et al. (2019) study is defined as how likely the predominant vegetation is to change under future climate. Vulnerability to climate change was categorized as low, moderate, high, and very high likelihood of change, according to the difference between historic and future climate. The original dataset segments all lands into ecological response units (ERUs)—a classification of lands into 26 ecosystem types (for example, spruce-fir forest, ponderosa pine forest, Juniper grass, semi-desert grassland, sagebush shrubland) to provide a fine subregional landscape analysis. Each ERU is assigned a vulnerability classification and an uncertainty classification based on the agreement of their modeling projections.
The polygon geospatial layer was summarized as the percentage of each geography (e.g. census tract) with high or very high likelihood of vegetative change when uncertainty is low or moderate. Calculation using Triepke, F. J., E. H. Muldavin, and M. M. Wahlberg. 2019. Using climate projections to assess ecosystem vulnerability at scales relevant to managers. Ecosphere 10(9):e02854. 10.1002/ecs2.2854
Subject: Socioeconomic Vulnerability to Ecological Change Census
Category:
Keywords: Socioeconomic,Vulnerability,Ecological,USFS,Southwest Region,Arizona,New Mexico
AntialiasingMode: Fast
TextAntialiasingMode: Force
Supports Dynamic Layers: true
MaxRecordCount: 2000
MaxImageHeight: 4096
MaxImageWidth: 4096
Supported Query Formats: JSON, geoJSON, PBF
Supports Query Data Elements: true
Min Scale: 5000000
Max Scale: 0
Supports Datum Transformation: true
Child Resources:
Info
Dynamic Layer
Supported Operations:
Export Map
Identify
QueryLegends
QueryDomains
Find
Return Updates