View In:
ArcGIS JavaScript
ArcGIS Online Map Viewer
ArcGIS Earth
Service Description: This product is part of the Landscape Change Monitoring System (LCMS) data suite. It shows LCMS modeled land use classes for each year. See additional information about land use in the Entity_and_Attribute_Information section below. LCMS is a remote sensing-based system for mapping and monitoring landscape change across the United States. Its objective is to develop a consistent approach using the latest technology and advancements in change detection to produce a "best available" map of landscape change. Because no algorithm performs best in all situations, LCMS uses an ensemble of models as predictors, which improves map accuracy across a range of ecosystems and change processes (Healey et al., 2018). The resulting suite of LCMS change, land cover, and land use maps offer a holistic depiction of landscape change across the United States over the past four decades. Predictor layers for the LCMS model include annual Landsat and Sentinel 2 composites, outputs from the LandTrendr and CCDC change detection algorithms, and terrain information. These components are all accessed and processed using Google Earth Engine (Gorelick et al., 2017). To produce annual composites, the cFmask (Zhu and Woodcock 2012), cloudScore, and TDOM (Chastain et al., 2019) cloud and cloud shadow masking methods are applied to Landsat Tier 1 and Sentinel 2a and 2b Level-1C top of atmosphere reflectance data. The annual medoid is then computed to summarize each year into a single composite. The composite time series is temporally segmented using LandTrendr (Kennedy et al., 2010; Kennedy et al., 2018; Cohen et al., 2018). All cloud and cloud shadow free values are also temporally segmented using the CCDC algorithm (Zhu and Woodcock, 2014). The raw composite values, LandTrendr fitted values, pair-wise differences, segment duration, change magnitude, and slope, and CCDC September 1 sine and cosine coefficients (first 3 harmonics), fitted values, and pairwise differences, along with elevation, slope, sine of aspect, cosine of aspect, and topographic position indices (Weiss, 2001) from the National Elevation Dataset (NED), are used as independent predictor variables in a Random Forest (Breiman, 2001) model. Reference data are collected using TimeSync, a web-based tool that helps analysts visualize and interpret the Landsat data record from 1984-present (Cohen et al., 2010).Outputs fall into three categories: change, land cover, and land use. Change relates specifically to vegetation cover and includes slow loss, fast loss (which also includes hydrologic changes such as inundation or desiccation), and gain. These values are predicted for each year of the Landsat time series and serve as the foundational products for LCMS.References: Breiman, L. (2001). Machine Learning (Vol. 45, Issue 3, pp. 261-277). https://doi.org/10.1023/a:1017934522171 Chastain, R., Housman, I., Goldstein, J., Finco, M., and Tenneson, K. (2019). Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM top of atmosphere spectral characteristics over the conterminous United States. In Remote Sensing of Environment (Vol. 221, pp. 274-285). https://doi.org/10.1016/j.rse.2018.11.012 Cohen, W. B., Yang, Z., and Kennedy, R. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync - Tools for calibration and validation. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2911-2924). https://doi.org/10.1016/j.rse.2010.07.010 Cohen, W. B., Yang, Z., Healey, S. P., Kennedy, R. E., and Gorelick, N. (2018). A LandTrendr multispectral ensemble for forest disturbance detection. In Remote Sensing of Environment (Vol. 205, pp. 131-140). https://doi.org/10.1016/j.rse.2017.11.015 Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. In Remote Sensing of Environment (Vol. 202, pp. 18-27). https://doi.org/10.1016/j.rse.2017.06.031 Healey, S. P., Cohen, W. B., Yang, Z., Kenneth Brewer, C., Brooks, E. B., Gorelick, N., Hernandez, A. J., Huang, C., Joseph Hughes, M., Kennedy, R. E., Loveland, T. R., Moisen, G. G., Schroeder, T. A., Stehman, S. V., Vogelmann, J. E., Woodcock, C. E., Yang, L., and Zhu, Z. (2018). Mapping forest change using stacked generalization: An ensemble approach. In Remote Sensing of Environment (Vol. 204, pp. 717-728). https://doi.org/10.1016/j.rse.2017.09.029 Kennedy, R. E., Yang, Z., and Cohen, W. B. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - Temporal segmentation algorithms. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2897-2910). https://doi.org/10.1016/j.rse.2010.07.008 Kennedy, R., Yang, Z., Gorelick, N., Braaten, J., Cavalcante, L., Cohen, W., and Healey, S. (2018). Implementation of the LandTrendr Algorithm on Google Earth Engine. In Remote Sensing (Vol. 10, Issue 5, p. 691). https://doi.org/10.3390/rs10050691 Weiss, A.D. (2001). Topographic position and landforms analysis Poster Presentation, ESRI Users Conference, San Diego, CA Zhu, Z., and Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. In Remote Sensing of Environment (Vol. 118, pp. 83-94). https://doi.org/10.1016/j.rse.2011.10.028 Zhu, Z., and Woodcock, C. E. (2014). Continuous change detection and classification of land cover using all available Landsat data. In Remote Sensing of Environment (Vol. 144, pp. 152-171). https://doi.org/10.1016/j.rse.2014.01.011
Name: RDW_LandscapeAndWildlife/LCMS_Southeast_Alaska_Year_Of_Highest_Prob_Slow_Loss
Description: This product is part of the Landscape Change Monitoring System (LCMS) data suite. It shows LCMS modeled land use classes for each year. See additional information about land use in the Entity_and_Attribute_Information section below. LCMS is a remote sensing-based system for mapping and monitoring landscape change across the United States. Its objective is to develop a consistent approach using the latest technology and advancements in change detection to produce a "best available" map of landscape change. Because no algorithm performs best in all situations, LCMS uses an ensemble of models as predictors, which improves map accuracy across a range of ecosystems and change processes (Healey et al., 2018). The resulting suite of LCMS change, land cover, and land use maps offer a holistic depiction of landscape change across the United States over the past four decades. Predictor layers for the LCMS model include annual Landsat and Sentinel 2 composites, outputs from the LandTrendr and CCDC change detection algorithms, and terrain information. These components are all accessed and processed using Google Earth Engine (Gorelick et al., 2017). To produce annual composites, the cFmask (Zhu and Woodcock 2012), cloudScore, and TDOM (Chastain et al., 2019) cloud and cloud shadow masking methods are applied to Landsat Tier 1 and Sentinel 2a and 2b Level-1C top of atmosphere reflectance data. The annual medoid is then computed to summarize each year into a single composite. The composite time series is temporally segmented using LandTrendr (Kennedy et al., 2010; Kennedy et al., 2018; Cohen et al., 2018). All cloud and cloud shadow free values are also temporally segmented using the CCDC algorithm (Zhu and Woodcock, 2014). The raw composite values, LandTrendr fitted values, pair-wise differences, segment duration, change magnitude, and slope, and CCDC September 1 sine and cosine coefficients (first 3 harmonics), fitted values, and pairwise differences, along with elevation, slope, sine of aspect, cosine of aspect, and topographic position indices (Weiss, 2001) from the National Elevation Dataset (NED), are used as independent predictor variables in a Random Forest (Breiman, 2001) model. Reference data are collected using TimeSync, a web-based tool that helps analysts visualize and interpret the Landsat data record from 1984-present (Cohen et al., 2010).Outputs fall into three categories: change, land cover, and land use. Change relates specifically to vegetation cover and includes slow loss, fast loss (which also includes hydrologic changes such as inundation or desiccation), and gain. These values are predicted for each year of the Landsat time series and serve as the foundational products for LCMS.References: Breiman, L. (2001). Machine Learning (Vol. 45, Issue 3, pp. 261-277). https://doi.org/10.1023/a:1017934522171 Chastain, R., Housman, I., Goldstein, J., Finco, M., and Tenneson, K. (2019). Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM top of atmosphere spectral characteristics over the conterminous United States. In Remote Sensing of Environment (Vol. 221, pp. 274-285). https://doi.org/10.1016/j.rse.2018.11.012 Cohen, W. B., Yang, Z., and Kennedy, R. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync - Tools for calibration and validation. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2911-2924). https://doi.org/10.1016/j.rse.2010.07.010 Cohen, W. B., Yang, Z., Healey, S. P., Kennedy, R. E., and Gorelick, N. (2018). A LandTrendr multispectral ensemble for forest disturbance detection. In Remote Sensing of Environment (Vol. 205, pp. 131-140). https://doi.org/10.1016/j.rse.2017.11.015 Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. In Remote Sensing of Environment (Vol. 202, pp. 18-27). https://doi.org/10.1016/j.rse.2017.06.031 Healey, S. P., Cohen, W. B., Yang, Z., Kenneth Brewer, C., Brooks, E. B., Gorelick, N., Hernandez, A. J., Huang, C., Joseph Hughes, M., Kennedy, R. E., Loveland, T. R., Moisen, G. G., Schroeder, T. A., Stehman, S. V., Vogelmann, J. E., Woodcock, C. E., Yang, L., and Zhu, Z. (2018). Mapping forest change using stacked generalization: An ensemble approach. In Remote Sensing of Environment (Vol. 204, pp. 717-728). https://doi.org/10.1016/j.rse.2017.09.029 Kennedy, R. E., Yang, Z., and Cohen, W. B. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - Temporal segmentation algorithms. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2897-2910). https://doi.org/10.1016/j.rse.2010.07.008 Kennedy, R., Yang, Z., Gorelick, N., Braaten, J., Cavalcante, L., Cohen, W., and Healey, S. (2018). Implementation of the LandTrendr Algorithm on Google Earth Engine. In Remote Sensing (Vol. 10, Issue 5, p. 691). https://doi.org/10.3390/rs10050691 Weiss, A.D. (2001). Topographic position and landforms analysis Poster Presentation, ESRI Users Conference, San Diego, CA Zhu, Z., and Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. In Remote Sensing of Environment (Vol. 118, pp. 83-94). https://doi.org/10.1016/j.rse.2011.10.028 Zhu, Z., and Woodcock, C. E. (2014). Continuous change detection and classification of land cover using all available Landsat data. In Remote Sensing of Environment (Vol. 144, pp. 152-171). https://doi.org/10.1016/j.rse.2014.01.011
Single Fused Map Cache: false
Extent:
XMin: -2.00375070672E7
YMin: 6298429.379699998
XMax: 2.0037507842788246E7
YMax: 1.1545849379699998E7
Spatial Reference: 102100
(3857)
Initial Extent:
XMin: -2.00375070672E7
YMin: 6298429.379699998
XMax: 2.0037507842788246E7
YMax: 1.1545849379699998E7
Spatial Reference: 102100
(3857)
Full Extent:
XMin: -2.00375070672E7
YMin: 6298429.379699998
XMax: 2.0037507842788246E7
YMax: 1.1545849379699998E7
Spatial Reference: 102100
(3857)
Pixel Size X: 29.99999618963752
Pixel Size Y: 30.0
Band Count: 1
Pixel Type: U8
RasterFunction Infos: {"rasterFunctionInfos": [
{
"name": "LCMS_Year_Loss_2023",
"description": "Most Recent Year Loss Coloramp 2023 RFT",
"help": ""
},
{
"name": "YearLoss2023",
"description": "Year Loss color 2023",
"help": ""
},
{
"name": "None",
"description": "",
"help": ""
}
]}
Mensuration Capabilities: None
Inspection Capabilities:
Has Histograms: true
Has Colormap: false
Has Multi Dimensions : false
Rendering Rule:
Min Scale: 0
Max Scale: 0
Copyright Text:
Service Data Type: esriImageServiceDataTypeThematic
Min Values: 20
Max Values: 52
Mean Values: 48.13953488372093
Standard Deviation Values: 6.3941245178636175
Object ID Field: OBJECTID
Fields:
-
OBJECTID
(
type: esriFieldTypeOID, alias: OBJECTID
)
-
Shape
(
type: esriFieldTypeGeometry, alias: Shape
)
-
Name
(
type: esriFieldTypeString, alias: Name, length: 200
)
-
MinPS
(
type: esriFieldTypeDouble, alias: MinPS
)
-
MaxPS
(
type: esriFieldTypeDouble, alias: MaxPS
)
-
LowPS
(
type: esriFieldTypeDouble, alias: LowPS
)
-
HighPS
(
type: esriFieldTypeDouble, alias: HighPS
)
-
Category
(
type: esriFieldTypeInteger, alias: Category
, Coded Values:
[0: Unknown]
, [1: Primary]
, [2: Overview]
, ...6 more...
)
-
Tag
(
type: esriFieldTypeString, alias: Tag, length: 100
)
-
GroupName
(
type: esriFieldTypeString, alias: GroupName, length: 100
)
-
ProductName
(
type: esriFieldTypeString, alias: ProductName, length: 100
)
-
CenterX
(
type: esriFieldTypeDouble, alias: CenterX
)
-
CenterY
(
type: esriFieldTypeDouble, alias: CenterY
)
-
ZOrder
(
type: esriFieldTypeInteger, alias: ZOrder
)
-
Shape_Length
(
type: esriFieldTypeDouble, alias: Shape_Length
)
-
Shape_Area
(
type: esriFieldTypeDouble, alias: Shape_Area
)
Default Mosaic Method: Northwest
Allowed Mosaic Methods: NorthWest,Center,LockRaster,ByAttribute,Nadir,Viewpoint,Seamline,None
SortField:
SortValue: null
Mosaic Operator: First
Default Compression Quality: 75
Default Resampling Method: Nearest
Max Record Count: 1000
Max Image Height: 4100
Max Image Width: 5000
Max Download Image Count: 20
Max Mosaic Image Count: 45
Allow Raster Function: true
Allow Copy: true
Allow Analysis: true
Allow Compute TiePoints: false
Supports Statistics: true
Supports Advanced Queries: true
Use StandardizedQueries: true
Raster Type Infos:
Name: Raster Dataset
Description: Supports all ArcGIS Raster Datasets
Help:
Has Raster Attribute Table: false
Edit Fields Info: null
Ownership Based AccessControl For Rasters: null
Child Resources:
Info
Histograms
Statistics
Key Properties
Legend
Raster Function Infos
Supported Operations:
Export Image
Query
Identify
Compute Histograms
Compute Statistics Histograms
Get Samples
Compute Class Statistics
Query GPS Info
Find Images
Image to Map
Map to Image
Measure from Image
Image to Map Multiray
Query Boundary
Compute Pixel Location
Compute Angles
Validate
Project