A Review of the Role of Fungi in Wood Decay of Forest Ecosystems

Bruce G. Marcot

Abstract

Fungi are key players in the health, diversity, and productivity of forest ecosystems in Pacific Northwest forests, as mycorrhizal associations, pathogens, decomposers, nontimber resources, and food resources for wildlife. A number of invertebrate species are associated with wood decay fungi, serve as vectors for fungal pathogens, or are fungivorous (consume fungi) and influence rates of wood decay and nutrient mineralization. In Washington and Oregon, 31 wildlife species among 8 families are fungivores, and at least 14 wildlife species disperse fungi. Down wood can provide nurse substrates for seedlings and beneficial mycorrhizal fungi, refuges from pathogenic soil fungi, sources of nutrients for decay fungi, and substrates supporting overall fungal diversity. Presence, density, distribution, and diversity of fungi are influenced by forest stand management practices, forest age class, and effects of fire. Old forests provide for a suite of rare fungi species. Old legacy trees retained during forest harvest can provide some degree of conservation of beneficial and rare fungi. Fungi can be difficult to detect and monitor; surveying for fungi at various times of the year, for multiple (at least 5) years, and by including hypogeous (belowground) samples, can improve detection rates. Studies are needed in the Pacific Northwest to quantify the amount of down wood—number of pieces, sizes, total biomass, percentage of forest floor cover, and other attributes—necessary for maintaining or restoring fungal biodiversity and viable levels of individual fungi species, especially rare species.

Keywords: fungi, mushrooms, mycorrhizae, down wood, coarse woody debris, wood decay, nontimber forest product, fungivores, old forests, monitoring, fire effects.

1 Bruce G. Marcot is a research wildlife biologist, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 620 SW Main St., Suite 400, Portland OR 97208, bmarcot@fs.fed.us.
Introduction

This report summarizes research and knowledge of the role of fungi in wood decay in the forest ecosystems of Washington and Oregon, and serves to complement the website “DecAID, the Decayed Wood Advisor for Managing Snags, Partially Dead Trees, and Down Wood for Biodiversity in Forests of Washington and Oregon.” DecAID is a synthesis of data and research results and a planning tool to help inform the management of wood decay elements for biodiversity and species conservation. DecAID describes, in part, fungi associated with decayed wood in Washington and Oregon, including a summary of their ecological roles, the importance of dead wood to fungi, and considerations for the maintenance of fungal biodiversity.

What Are Fungi?

Formally, the term *fungi* as used here refers to the general taxonomic group of organisms that includes rusts, smuts, mildews, molds, yeasts, and mushrooms, and my focus in this review is largely on the mushrooms associated with wood decay. Fungi most associated with wood decay are the filamentous species of Basidiomycota and Ascomycota (Arnstadt et al. 2016, Swift 1982). More casually, *fungi* also can include the fungus-like slime molds and water molds. Although not discussed here, these nonetheless can be important ecologically and economically, and are more often considered in forest management under pathogen and disease programs. For example, the water mold *Phytophthora ramorum* is responsible for sudden oak death, a forest disease causing widespread killing of oaks and other trees in the Pacific Northwest (Cobb et al. 2012, Rizzo and Garbelotto 2003).

This review covers the various roles and relationships of fungi in wood decay in forests of the Pacific Northwest region of the United States. I also include references to studies conducted outside the Pacific Northwest when local research on specific topics is unavailable.

Ecological Functions of Fungi

Fungi play a number of ecological roles in forest ecosystems that affect the health, diversity, productivity, and development of their biotic communities. Such roles include mycorrhizal associations with vascular plants, pathogens of commercial tree species, decomposers of coarse organic material, and food resources for wildlife.

2 https://www.fs.fed.us/r6/nr/wildlife/decaid/.
Mycorrhizal Associations

Mycorrhizal fungi consist of strings of hyphae that form mutualistic symbiotic relationships with roots of vascular plants, including trees of commercial value, and that aid the plant in nutrient and water uptake, while the fungi benefit by receiving carbon. Two forms of mycorrhizae are those that grow hyphae from a mantle surrounding the plant roots (ectomycorrhizae) and those with mycelia that embed within the root tissue itself (endomycorrhizae). Allen (1991), O’Dell et al. (1993), and Smith and Read (1997) provided reviews of the structure and function of mycorrhizal fungi.

Fungi As Pathogens

Fungi can also act as pathogens on trees, serving as a cause of tree mortality and altering forest stand structure by opening canopy gaps that, in turn, allow sunlight to penetrate to the forest floor, spurring growth of understory plants and increasing or altering the diversity of plant species (Holah et al. 1993) and other fungi (Christensen 1989). Pathogenic fungi contribute to the accumulation of dead and decaying wood in a forest.

Fungi can create decay in living trees that may be exploited as habitat by some animals. For example, pathogenic fungi such as heartrot fungi can create habitat conditions for primary and secondary cavity-nesting wildlife species and can alter nutrient cycling (Hennon 1995).

Fungi As Decomposers

Fungi associated with down wood are saprobic, meaning that they derive nutrients from decaying organic material. One such species in the Pacific Northwest is orange jelly (Dacrymyces chrysospermus), found on decaying logs of Douglas-fir (Pseudotsuga menzeisii (Mirb.) Franco) (fig. 1). Other unique fungi associated with down wood and wood decay in the Pacific Northwest are the bird’s nest fungus, Nidula niveotomentosa (fig. 2), and the veined cup, Disciotis venosa (fig. 3).

Fungi found in decaying wood, litter, and duff serve to recycle nutrients (Fogel and Hunt 1983, Hattenschwiler et al. 2005), particularly nitrogen and carbon, as well as minerals, which can then be used by other organisms. Such decomposition processes also serve to physically and chemically break down soil organic matter and alter soil structure. In coarse down wood, wood fungi help mobilize nitrogen, phosphorus, and potassium during the early decay stages (Harmon et al. 1994). Wood decomposition in German forests of European beech (Fagus sylvatica L.),
Figure 1—Orange jelly mushroom, *Dacrymyces chrysospermus* (previously *D. palmatus*), found on a down log of Douglas-fir in the Cascade Mountains of southwestern Washington.

Figure 2—Bird's nest fungus, *Nidula niveotomentosa*, on a moist Douglas-fir log in the central coast range of Oregon. This unique fungal structure consists of a nest cup called a peridium, that holds “egg” structures called peridioles which contain spore bodies called gleba. In bird's nest fungi, the peridioles are held in place in the cups with a gelatinous glue-like material until they disperse from splashing raindrops. Species of *Nidula* can reproduce both sexually and asexually, and they produce a ketone chemical with the flavor of raspberry.

Norway spruce (*Picea abies* (L.) Karst.), and Scots pine (*Pinus sylvestris* L.) is dominated by white-rot fungi (*Phanerochaete chrysosporium*), which breaks down lignin in wood (Arnstadt et al. 2016).

In cool temperate and subalpine forests of Japan, Osono (2015) found that litter decomposition was more affected by the presence of specific fungal families than by the type of litter. Fungi of Basidiomycetes had higher rates of lignin breakdown than did fungi of Xylariaceae.
In western Montana, Harvey et al. (1981) found that soil organic matter ≤45 percent by volume of the top 30 cm of soil was associated with increased numbers of ectomycorrhizae, but at >45 percent the numbers decreased, and the relationship of soil organic matter and ectomycorrhizae was more salient in dry rather than moist sites.

In studying the role of fungi in decomposition of oak stumps, van der Wal et al. (2015) reported finding unique fungal communities in freshly cut trees and in younger stumps, and noted that old stumps harbored more random assortments of fungal species. They also found that ascomycete fungi likely play a prominent role in wood decay, but stated that further testing is needed, and that better understanding of the fungal roles in wood decay can help improve estimates of carbon sequestration of forests. In southern Sweden, Tyler (1992) likewise found distinct communities of ectomycorrhizal fungi associated with early decay stages of hardwoods.

Fungi As Nontimber Forest Products

Many fungi—particularly aboveground fruiting mushrooms such as chanterelles, morels, matsutake, boletes, truffles, ganoderma (reishi), and others—are sought as food sources, for medicinal use, and by recreational collectors in an expanding
industry (Amaranthus and Pilz 1996, Molina et al. 1993, Pilz et al. 1998, Schlosser and Blatner 1995). Kucuker and Baskent (2017) developed a simulation-based decision-support model to assess the effects of forest management intensity on mushroom occurrence and production. Although developed for northwest Turkey, their system may hold potential for guiding multiple-use forest management in the Pacific Northwest. In a Scots pine forest of central Spain, intensive collection of seasonal sporocarps (aboveground fruiting bodies) of king boletes (Boletus edulis) during four productive seasons did not significantly reduce its mycelium biomass, so that the mushroom was able to sustain its productivity (Parladé et al. 2017). This may have implications for monitoring, as discussed further below.

Fungi As Food Resources for Wildlife

Fungi themselves are ingested by a wide variety of invertebrate and vertebrate wildlife (Fogel and Trappe 1978, Ingham and Molina 1991, Maser et al. 1978), as discussed more fully in the next section.

Fungi and Invertebrates

Furniss and Carolin (1980) provided a number of examples of insect associations with fungi in forests of the Western United States, as follows. Bark beetles are associated with trees weakened or killed by root-rotting fungi such as Porioa root rot (Phellinus weirii), annosus root rot (Fomes annosus), and shoestring rot (Armillaria mellea and Phytophthora lateralis). Some insects, including the smaller European elm bark beetle (Scolytus multistriatus), disperse disease-causing fungi, thereby infecting healthy trees. Stain fungi are introduced into weakened trees by bark beetles (especially the western balsam bark beetle, Dryocoetes confusus); ambrosia beetles (subfamilies Scolytinae and Platypodinae of Curculionidae); and wood borers (many species and families), the last of which can also mine in sound wood and thereby increase the penetration of wood-rotting fungi in down trees and logs. Ambrosia beetles in particular disperse, introduce, and feed on ambrosia fungi (Ambrosiella and Raffaelea) and can be highly fungi species-specific. Fir engraver beetles (Scolytus spp.) can disperse and introduce brown-stain fungus (Trichosporium symbioticum). Some bark beetles (Gnathotrichus sulcatus) store and disseminate the symbiotic fungi Ambrosiella sulci and Raffaelea sulci, and the larvae of some horntail insects (Sirex and Urocerus) feed upon the symbiotic fungi Amylostereum. Subterranean termites that comminute (chew) wood fiber are attracted to the wood-decaying fungus Lenzites trabea. Among invertebrates associated with yeasts are roundheaded beetles (Dendroctonus spp.), bark beetles, and carpenter ants (Camponotus spp.). Silver fir beetles (Pseudohylesinus sericeus)
can be commonly associated with brown-stain fungi and root-rotting fungi, including Armillaria mellea, Fomes annosus, and Phellinus weirii.

In general, wood-boring insects are known to transport many fungal genera (Schowalter 2000). Ulyshen (2016) reported that invertebrates that are particularly influential in promoting wood decomposition include wood-boring beetles (Coleoptera) and termites (Termitoidae), especially fungus-farming macrotermitines. In a broad study of 13 temperate tree species, Kahl et al. (2017) found that wood decay rates were mediated by enzyme activity and diversity of beetle species. Wood decays more rapidly when it incurs decay fungi introduced by wood-boring beetles, wasps, and termites than when it is initially inoculated with mold fungi by bark and ambrosia beetles (Schowalter 2000). This is because mold fungi can catabolize carbohydrates and thereby inhibit later colonization of decay fungi.

Species interactions that affect changes in fungal and insect communities during wood decay are, in general, poorly understood, and long-term studies are needed. In a boreal forest in central Sweden, Weslien et al. (2011) found that a bark beetle (Hylurgops palliatus) and a wood-borer (Monochamus sutor) colonized stumps during the first year following cutting; their saproxylic (decaying or dead wood-dependent) functions were mediated by the wood-decaying fungus Fomitopsis pinicola, which eventually provided habitat in the stumps 10 years later for a rare, wood-living beetle, Peltis grossa. Thus, the researchers suggested this as an example of managing for rare or threatened insect species by understanding the links between saproxylic taxa such as the beetles and the fungi.

Some members of the darkling beetle family Tenebrionidae are associated with fungi (White 1983) (fig. 4). For example, the forked fungus beetle Bolitotherus cornutus is nocturnal; during the day it inhabits hard shelf fungi or crevices where the fungi are attached. The darkling beetles Diaperis spp. and Playtdema spp. occur under bark and in fungi. The aptly named handsome fungus beetles of family Endomychidae, such as the Idaho handsome fungus beetle Mycetina idahoensis, occur under bark in rotting wood and in fungi on which they feed (Haggard and Haggard 2006).

Fungivorous insects are typically associated with late-successional forests (Schowalter 2000) and can influence the diversity of fungi in decaying wood in both managed and natural forests (Muller et al. 2002). Fungivorous springtails apparently serve to transfer secondary metabolites (catalpol, an iridoid glucoside) from host plants to arbuscular endomycorrhizal fungi (Duhamel et al. 2013). This functions in the fungi to prevent it from being grazed. In this triad of relationships, the springtails benefit from the fungal food source, the fungi benefits from avoiding grazing, and the host plant benefits from using the symbiotic fungi to absorb soil nutrients.
Figure 4—A horned fungus beetle (Bolitotherus cornutus) (family Tenebrionidae, darkling beetles), found in the woods of eastern North America. This species feeds on the tissue of bracket fungi (polypores) on dead or dying tree trunks. It lays its eggs within the fungi, and the larvae pupate within the bracket or in nearby soil. Other fungivorous species of this family, such as the broad-necked darkling beetle (Coelocnemis californicus, previously C. dilaticollis), are found in the Northwest, but are poorly studied.

In other symbiotic relationships, Macrotermitinae termites deposit all their feces in their tended gardens of the fungus Termitomyces spp. (Basidiomycetes). Individual termite species of this group tend to be associated with, and feed only on, specific species of these fungi (Edwards 2000).

Nutrients in woodland soils can be greatly affected by some invertebrate associations with fungi, as reported by Crowther et al. (2011a). Invertebrate grazers in soil can determine the composition of fungal decomposer communities. For example, isopods were found to feed selectively on the cord-forming fungus Resinicium bicolor, thus preventing the competitive exclusion of two fungi species in soil and wood. Similar mediating functions were also observed with soil nematodes. Thus, conditions affecting soil invertebrates can also affect their influence on fungal communities and associated nutrient cycles. Also, invertebrate fungivory can influence decay rates of wood and nutrient mineralization and decomposition (Crowther et al. 2011b).

Some mycorrhizal fungi produce non-nitrogenous chemical defenses, including pyrethroids that are toxins absorbed through insect exoskeletons (Schowalter 2000).
Fungi and Wildlife

In Washington and Oregon, some 31 wildlife species among 8 families (all mammals) are known to be fungivores (table 1).

<table>
<thead>
<tr>
<th>Family</th>
<th>Common name</th>
<th>Scientific name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cervidae</td>
<td>Black-tailed deer</td>
<td>Odocoileus hemionus columbianus</td>
</tr>
<tr>
<td>Cervidae</td>
<td>Mule deer</td>
<td>Odocoileus hemionus hemionus</td>
</tr>
<tr>
<td>Cervidae</td>
<td>Rocky Mountain elk</td>
<td>Cervus elaphus nelsoni</td>
</tr>
<tr>
<td>Cervidae</td>
<td>Roosevelt elk</td>
<td>Cervus elaphus roosevelti</td>
</tr>
<tr>
<td>Dipodidae</td>
<td>Pacific jumping mouse</td>
<td>Zapus trinotatus</td>
</tr>
<tr>
<td>Geomyidae</td>
<td>Camas pocket gopher</td>
<td>Thomomys bulbivorus</td>
</tr>
<tr>
<td>Geomyidae</td>
<td>Northern pocket gopher</td>
<td>Thomomys talpoides</td>
</tr>
<tr>
<td>Geomyidae</td>
<td>Townsend’s pocket gopher</td>
<td>Thomomys townsendii</td>
</tr>
<tr>
<td>Muridae</td>
<td>Bushy-tailed woodrat</td>
<td>Neotoma cinerea</td>
</tr>
<tr>
<td>Muridae</td>
<td>Canyon mouse</td>
<td>Peromyscus crinitus</td>
</tr>
<tr>
<td>Muridae</td>
<td>Columbian mouse</td>
<td>Peromyscus keeni</td>
</tr>
<tr>
<td>Muridae</td>
<td>Creeping vole</td>
<td>Microtus oregoni</td>
</tr>
<tr>
<td>Muridae</td>
<td>Deer mouse</td>
<td>Peromyscus maniculatus</td>
</tr>
<tr>
<td>Muridae</td>
<td>Pinon mouse</td>
<td>Peromyscus truei</td>
</tr>
<tr>
<td>Muridae</td>
<td>Southern red-backed vole</td>
<td>Myodes gapperi</td>
</tr>
<tr>
<td>Muridae</td>
<td>Western red-backed vole</td>
<td>Myodes californicus</td>
</tr>
<tr>
<td>Muridae</td>
<td>White-footed vole</td>
<td>Arborimus albipes</td>
</tr>
<tr>
<td>Ochotonidae</td>
<td>American pika</td>
<td>Ochotona princeps</td>
</tr>
<tr>
<td>Sciuridae</td>
<td>Douglas’ squirrel</td>
<td>Tamiasciurus douglasii</td>
</tr>
<tr>
<td>Sciuridae</td>
<td>Golden-mantled ground squirrel</td>
<td>Spermophilus lateralis</td>
</tr>
<tr>
<td>Sciuridae</td>
<td>Least chipmunk</td>
<td>Tamias minimus</td>
</tr>
<tr>
<td>Sciuridae</td>
<td>Northern flying squirrel</td>
<td>Glaucomyos sabrinus</td>
</tr>
<tr>
<td>Sciuridae</td>
<td>Red squirrel</td>
<td>Tamiasciurus hudsonicus</td>
</tr>
<tr>
<td>Sciuridae</td>
<td>Townsend’s chipmunk</td>
<td>Tamias townsendii</td>
</tr>
<tr>
<td>Sciuridae</td>
<td>Siskiyou chipmunk</td>
<td>Tamias siskiyou</td>
</tr>
<tr>
<td>Sciuridae</td>
<td>Western gray squirrel</td>
<td>Sciurus griseus</td>
</tr>
<tr>
<td>Sciuridae</td>
<td>Yellow-pine chipmunk</td>
<td>Tamias amoenus</td>
</tr>
<tr>
<td>Soricidae</td>
<td>Pacific shrew</td>
<td>Sorex pacificus</td>
</tr>
<tr>
<td>Soricidae</td>
<td>Trowbridge’s shrew</td>
<td>Sorex trowbridgii</td>
</tr>
<tr>
<td>Soricidae</td>
<td>Vagrant shrew</td>
<td>Sorex vagrans</td>
</tr>
<tr>
<td>Suidae</td>
<td>Feral pig</td>
<td>Sus scrofa</td>
</tr>
</tbody>
</table>

* Also disperses fungi.

Note: taxonomy is from Hayssen, V.; Mammalian Species, American Society of Mammalogists, http://www.science.smith.edu/departments/Biology/VHAYSEN/MS/default.html.
Some fungi are dispersed on the beaks of foraging and cavity-excavating woodpeckers (Jusino et al. 2016), thereby serving to inoculate live and dead trees. Fungi such as truffles and their ectomycorrhizal sporocarps are key food resources for northern flying squirrels (*Glaucomys sabrinus*) (Lehmkuhl et al. 2004); in turn, flying squirrels are a key prey species of northern spotted owls (*Strix occidentalis caurina*) in parts of the owl’s range.

Some fungi are highly detrimental to some species of wildlife, such as the deadly amphibian disease of chytridiomycosis caused by the fungus *Batrachochytrium dendrobatidis*, and white-nose syndrome, which is debilitating and deadly to bats, caused by the fungus *Pseudogymnoascus destructans*. However, there is no evidence that these fungal pathogens are related to wood decay.

Fungi-dispersing wildlife in this region (table 1) number at least 14 species, including American pika (*Ochotona princeps*). Species of deer and elk can disperse fungi through their pellets (fig. 5). Small mammals, such as white-footed voles (Manning et al. 2003), are among the species that are documented as dispersers of mycorrhizal fungi (Luoma et al. 2003, Maser et al. 1978).

In general, fungi species with hypogeous sporocarps (which release spores below ground), such as truffles, depend on animals for dispersal. Jacobs and Luoma (2008) studied four forest rodents (Townsend’s chipmunk, Siskiyou chipmunk, western red-backed vole, and southern red-backed vole) that serve both as dispersers of truffles, including *Rhizopogon*, and as prey for northern spotted owls. They found that isolated green-tree retention in harvest blocks reduced consumption of truffles by the voles, and that the impact could be offset by including green-tree aggregates within a dispersed retention matrix.

Maser and Maser (1988) reported that all squirrels of 5 genera and 8 species in Oregon conifer forests are mycophagous (eat fungi), particularly consuming belowground fruiting bodies of at least 26 genera of mycorrhizal fungi. Northern flying squirrels proved to be a nearly obligate fungivore. In general, they found that squirrels may be vital links involving belowground mycorrhizal fungi, nitrogen-fixing bacteria, yeast, and conifer trees.

Marcot (2002) demonstrated how a “functional web” can be depicted for wildlife associated with various wood decay elements (snags, down wood, litter, duff, mistletoe brooms, dead parts of live trees, hollow living trees, natural tree cavities, bark crevices, and live remnant or legacy trees), including wildlife species responsible for dispersing fungi, in Washington and Oregon.
Wood Decay and Fungi

The dynamics of wood decay are linked closely to the presence and ecological functions of fungi. Decay of snags and down wood proceeds through a series of stages marked by degree of wood breakdown, changes in the diversity of associated biota, progressions of nutrient transformations, and other processes. Spies and Cline (1988) and Maser et al. (1979) provided a 5-category classification system of wood
decay in down wood, progressing from recently downed wood with intact bark, branches, and twigs (decay class I) to advanced states of wood breakdown into soft textures of duff (decay class V).

Throughout this mini-successional sequence of wood decay, fungi, along with mesoarthropods and other species, play key physical and biochemical roles in wood decomposition and nutrient cycling. In particular, in young and old Douglas-fir stands, the ectomycorrhizal fungus *Piloderma fallax* increases in occurrence in relation to percentage of cover of down wood of the advanced decay class V. The presence of truffle and false truffle fungi has also been shown to be associated with proximity to (within 1 m of) down wood (Amaranthus et al. 1994). Down wood, throughout its decay sequence, also serves to retain moisture, which promotes growth of ectomycorrhizae (Amaranthus et al. 1989; Harmon and Sexton 1995; Harvey et al. 1976, 1978), and which thereby serves as refugia for seedlings and mycorrhizal fungi. Such “reservoir” functions of down wood can be particularly salient in xeric forests and during dry seasons, providing for establishment of beneficial mycorrhizal fungi as a forest stand regrows (O’Hanlon-Manners and Kotanen 2004) and serving as “nurse logs” for seedlings of vascular plants (Harmon and Franklin 1989, Kropp 1982) such as western hemlock (*Tsuga heterophylla* (Raf.) Sarg.), Engelmann spruce (*Picea engelmannii* Parry ex Engelm.), and subalpine fir (*Abies lasiocarpa* (Hook.) Nutt.) (Brang et al. 2003). Nurse logs also can act as refuges from pathogenic soil fungi (O’Hanlon-Manners and Kotanen 2004).

Decaying down wood provides nutrients for decay fungi and pathogens. Studies in North America and Scandinavia both reveal that high diversity of wood-decay fungal species is associated with the presence of large down wood (Bader et al. 1995, Crites and Dale 1998, Høiland and Bendiksen 1996, Kruys et al. 1999, Ohlson et al. 1997, Wästerlund and Ingelög 1981). Høiland and Bendiksen (1996) found that rare wood-inhabiting fungal species occurred primarily on long (mean 11 m) and well-decayed (average decay class III) down wood. Kruys and Jonsson (1999) found that fungal species diversity is associated with total surface area of down wood.

Fungi in Forest Management

Functioning forest ecosystems in the Pacific Northwest depend on the diversity and viability of fungal species. The presence, density, distribution, and diversity of fungi are influenced by forest stand management practices and by forest age.

In a study in France, Paillet et al. (2017) reported that snags, more so than large live trees, provide the bulk of tree microhabitats, including cavities, fungi conks, and bark features, and that strict forest reserves contain a greater abundance of such microhabitats than do managed forests.

Influence of Forest Management Activities

Thinning and clearcutting alter the fungal community and can reduce the production of sporocarps and ectomycorrhizae. Rydin et al. (1997) found that habitat loss and some forest management practices in Europe have led to declines in the diversity of fungi and in the presence of rare fungal species. Berg et al. (1994) reported that many fungal species in Swedish forests are threatened by the loss of old trees and declines in coarse woody debris. Arnstadt et al. (2016) noted that higher intensities of forest management in Germany negatively affect the volume of dead wood and richness of fungal species sporocarps. Parladé et al. (2017) found that clearcutting and partial cutting of Scots pine forests in central Spain equally and sharply reduced the mycelium biomass of king boletes (Boletus edulis).

In European Norway spruce stands, Lõhmus (2011) studied the influence of clearcutting, planting, and thinning on polypore (bracket) fungi. Results indicated that distinct polypore communities were present in clearcuts but their species richness declined over time and increased again 20 years post-cutting and following tree planting. Most polypore species were found in mature, unmanaged, naturally regenerated stands; thinning reduced species richness by 15 percent; and distinct polypore communities were present in young stands on nutrient-rich soils.

Fungi in Old Forests

Under the Northwest Forest Plan (NWFP) in western Washington and Oregon and northwestern California, the Survey and Manage Program listed 234 rare fungi species found in late-successional and old-growth forests (Molina 2008), many of which are associated with various aspects of wood decay. Molina (2008) noted that some two-thirds of these species also occurred outside late-successional forest reserves under the NWFP, suggesting that conservation of fungal biodiversity may benefit from additional guidelines outside the reserves. More recently, the
Interagency Special Status and Sensitive Species Program of the Pacific Northwest Region of the U.S. Forest Service and Bureau of Land Management has taken over the role and duties of the Survey and Manage Program, including providing an annotated bibliography of rare species of fungi of California, Oregon, and Washington.

Managing for Fungal Species and Communities

Except for sensitive or listed species, no general guidelines are in place to provide for conservation or restoration of fungal communities, including those associated with wood decay elements. It is known, though, that retention of legacy trees—usually mature or old-growth trees retained during forest harvest operations—can provide some degree of conservation of beneficial fungi such as mycorrhizae (Smith et al. 2000). Retaining green trees has been attributed by Luoma (2001) to retention of the rare truffle *Arcangelia camphorata*, which is otherwise lost in clearcuts, such as has been demonstrated in southwest Oregon (Amaranthus et al. 1994, Clarkson and Mills 1994). In Washington, Cline et al. (2005) reported that Douglas-fir seedlings nearer (<6 m) to residual mature Douglas-fir trees in recently harvested green-tree retention units had higher species richness and diversity of ectomycorrhizal fungi than did seedlings far from residual trees. They thus suggested that residual mature, legacy trees can maintain or accelerate recovery of ectomycorrhizal fungi following harvest. As well, retained stumps can provide environments for conks and other fungi (fig. 6).

In some cases, active management can help retain or restore desired fungi by deliberately introducing fungi in live trees. This can help foster wood decay and create snags and dead parts of live trees for wildlife habitat, such as demonstrated by Bednarz et al. (2013) and Filip et al. (2011) in forests of Oregon and Washington.

Figure 6—Cut stumps, along with coarse and fine down wood and other wood decay elements, can provide substrates for wood-decaying fungi such as these conks of *Fomatopsis pinicola*. Gifford Pinchot National Forest, Washington.

To maintain fungal biodiversity, the habitat and resource associations of multiple species need to be considered. This can be achieved, in part, by providing a range of sizes and decay classes of down wood, although such associations of individual species and their responses to various amounts, patterns, sizes, decay classes, and timing of down wood are poorly known and need much study. In general, though, providing down wood as well as living host plants of the correct ages and species can help maintain fungal diversity.

In Sweden, Edman and Jonsson (2001) and Edman et al. (2007) reported that the spatial distribution of down logs and wood-decaying fungi are influenced by wind and gap-phase dynamics in forests of old-growth Norway spruce. They also found that rare fungi species have specific substrate associations and that temporal variations in the patterns of canopy gaps and down wood abundance can affect fungi biodiversity. White et al. (2012) studied the effect of a massive ice storm in forests of southern Quebec, Canada, which caused forest canopy gap openings that became colonized by wood-rotting fungi, saproxylic insects, salamanders, and other organisms. Such canopy gap dynamics apparently served to maintain the diversity of opening-dependent taxa, including some fungi.

However, in a study of ectomycorrhizal fungi based on epigeous sporocarps in a cedar-hemlock forest of northwest British Columbia, Canada, Durall et al. (1999) found that fungal species richness decreased exponentially as a function of increasing size of forest gap cutblocks, particularly in gaps >900 m². Maximum fungal species richness was found ≤7 m from the forest edge. They suggested sampling both sporocarps and root tips for accurately determining the ectomycorrhizal fungal community.

In a study of northern hardwood forests, Brazee et al. (2014) found various fungi species associated with a variety of conditions, including stumps, down wood of small (<20 cm diameter) through large (>40 cm diameter) sizes, well-decayed substrates, minor host tree species, and canopy gaps. In Norway spruce forests of Sweden, Edman et al. (2004) found that fungi was more common in sites rich in down wood, and that fungi species richness was more greatly associated with large logs than with small logs. Crawford et al. (1990) found that filamentous fungi and yeast communities in Douglas-fir logs varied between decay classes III and IV, and they discovered a total of 18 genera and 36 species of fungi among logs of both decay classes.

Studies are needed in the Pacific Northwest to quantify the amount of down wood—number of pieces, sizes, total biomass, percentage of forest floor cover, and other attributes—necessary for maintaining or restoring fungal biodiversity and viable levels of individual fungi species, especially rare species. Also, fungi tend to
occur in patchy distributions because of the patchy occurrence of their substrates. Providing down wood of various sizes, species, and decay classes in patchy distributions throughout stands in managed forest landscapes may help restore and maintain desired fungal communities.

Surveys of wood-inhabiting fungi in spruce-hardwood forests of central Finland (Juutilainen et al. 2011) found a distinct fungal community in the smallest pieces of down wood; by excluding pieces <1 cm in diameter, fungi species richness, including rare species, was underestimated by 10 percent and occurrences by 46 percent. Surveying fungi only in larger down wood (coarse woody debris) seriously underestimated richness and abundance of dead wood-associated fungi.

It takes time for mycorrhizae to colonize down wood and coarse woody debris, because most mycorrhizal fungi in wood are associated with roots. A good example is Boletus (Aureoboletus) mirabilis, which always fruits from decay class IV or V wood, but that is because it is mycorrhizal with the roots of hemlock in the wood. This time delay needed for colonization and association with roots highlights the role and value of retaining some late-seral forests and old legacy trees as refugia and as source material for beneficial fungi (Clarkson and Mills 1994). Otherwise, sources may be relegated to disturbance-resistant fungi spores remaining in soil or in whatever unburned down wood may remain after disturbance (Baar et al. 1999). Still, reappearance of some fungi may appear delayed following disturbance, such as chanterelles (Cantharellus) appearing in western hemlock stands after 20 years following disturbance along the Washington coast (Pilz et al. 1998). But once established in appropriate habitat conditions, mycelial colonies of fungi can persist for many years (Dahlberg and Stenlid 1995, De la Bastide et al. 1994, Smith et al. 1992).

Lehmkuhl et al. (2007) discussed a decision-aiding model FuelSolve that can be used to guide management of fuels in forests under multiple objectives such as providing habitat for northern spotted owls and their prey, along with live and dead vegetation, mycorrhizal fungi, and arboreal lichens, as elements of the owl’s habitat.

Further ideas on managing Pacific Northwest forests for fungi can be found in Molina et al. (2001).

Monitoring Fungi

Fungi are often difficult to detect, especially for determining the presence of rare, sparsely-distributed, and seldom-fruiting species. Most species can be detected only when they produce reproductive structures such as cups, truffles, conks, and mushrooms (fig. 7). Different species may produce such detectible structures at different times and seasons (Luoma 1991), depending on species-specific relationships.
Figure 7—Fruiting bodies (sporocarps) of fungi may appear intermittently, seasonally, or rarely, depending on the species, its rarity, and environmental conditions, making monitoring a challenge. (A) Sporocarps of *Galerina marginata*, a most deadly species, on a down Douglas-fir log. (B) Sporocarps from *Mycella mycelia* beneath the log; their mycelia commonly grow from fine woody debris and litter.
to nutrient availability and environmental conditions of temperature, light, pH, and moisture. O’Dell et al. (1996) recommended surveying for fungi at various times of the year, particularly in spring and autumn, for at least 5 years, to provide any assurance of detection.

Lassauce et al. (2011) tested the idea that dead wood volume could be monitored as an index to species richness of saproxylic beetles and fungi in various forest types. However, they found that correlations were only moderately significant and concluded that dead wood volume is likely an imprecise indicator of saproxylic beetle and fungi biodiversity. Further, the efficacy of using dead wood volume to indicate saproxylic beetle diversity differed between boreal and temperate forests, with slightly greater predictability in the former. They suggested that additional landscape-level variables, such as the type and decay class of dead wood, be included in monitoring dead wood and associated organisms. Parladé et al. (2017) suggested that surveys of soil mycelium masses (fig. 8) can usefully indicate the response of some fungi to management activities, and could be useful adjuncts to monitoring sporocarp fruiting bodies of interest to gatherers.

Figure 8—Fungi mycelium mass beneath a log. Studies suggest that monitoring just the fruiting bodies (sporocarps, fig. 7) may underestimate fungal community diversity, and that surveying soil mycelium masses can better indicate response of fungi to forest management activities.
Another challenge to monitoring fungi related to wood decay is to identify the appropriate spatial and temporal scales. In a review of studies on saproxylic species (fungi, beetles, and lichens) and associated dead wood distribution in Europe, Sverdrup-Thygeson et al. (2014) identified key information gaps. They found a large variation among taxa of such species in response to spatial and temporal variations in dead wood patterns. They suggested that time-lag effects, in particular, need more study at landscape scales and for listed saproxylic species before firm management guidelines can be developed for them.

Influence of Fire

The main influence of fire on wood decay-associated fungi relates to how much sound or decaying wood is created or destroyed. Prescribed fires and wildfires alike can kill part or all of standing trees which, if not engulfed and fully charred, could provide fungi substrates standing or down. Fire also can eliminate fungi substrates, particularly with piling and burning of forest slash following timber harvests.

In forests of the eastern Cascade Range in Oregon, Smith et al. (2017) studied soil fungal and bacterial communities and biogeochemical processes following severe and less-severe burns. They found that soil fungi and bacteria steadily recolonized following the burns, but with a different community composition between the two fire severities. The greatest difference in fungal and bacterial community composition was evident early after the burns and became more similar over time.

In Swedish forests of Scots pine, Jonsson et al. (1999) compared chronosequences of ectomycorrhizae in stands burned by low-intensity wildfire and unburned late-successional stands. They found most of the common species in all sites, suggesting that ectomycorrhizae exhibit a continuity following low-intensity burning. Importantly, the belowground species composition was not reflected in that of the aboveground sporocarps.

Fungi As a Conservation Challenge

Maintaining and restoring desired wood decay-associated fungi can be quite a challenge for management (O’Dell et al. 1996) given the problems of intermittent detectability, variable dispersal, patchy distributions, and lack of scientific information on species’ life histories and habitat requirements. Further challenges include identifying species, the need for taxonomic studies, and incomplete understanding of their ecological functional roles in forest ecosystems. Studies conducted over the past decade have shed light on some fungi species in some geographic areas and forest types of the Pacific Northwest (e.g., see footnote 2).
In a global review of conservation strategies for managing dead wood for biodiversity, Seibold et al. (2015) found many information gaps and, at best, only scattered management guidelines. Their meta-analysis revealed that most studies have focused on early stages of wood decay and that some taxa, including fungi, are underrepresented. The studies do confirm the overall benefits of dead wood for biodiversity, but there is a need for research on advanced decay stages and on the influence on non-saproxylic organisms.

Still, fungi are key players in native and productive forests, and offer important roles in nutrient cycling, food sources, tree production, and maintenance of soil health.

Acknowledgments

This review is based in part on, and is updated from, a previous essay by Tina Dreisbach (2002), posted as part of the DecAID Decayed Wood Advisor version 2.20 (Mellen et al. 2002), and also borrows in part from Marcot et al. (N.d.). The original report by Driesbach was reviewed by Jane E. Smith, Randy Molina, Thomas O’Dell, Efrén Cázares, and the DecAID Science Team. I acknowledge and appreciate their work. Thanks also to Dan Luoma, Steven Acker, and Kim Mellen-McLean for helpful reviews of the current manuscript.

English Equivalents

<table>
<thead>
<tr>
<th>When you know:</th>
<th>Multiply by:</th>
<th>To find:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centimeters (cm)</td>
<td>0.394</td>
<td>Inches</td>
</tr>
<tr>
<td>Square meters (m²)</td>
<td>10.76</td>
<td>Square feet</td>
</tr>
</tbody>
</table>

References

A Review of the Role of Fungi in Wood Decay of Forest Ecosystems

Pacific Northwest Research Station

Website: http://www.fs.fed.us/pnw/
Telephone: (503) 808–2592
Publication requests: (503) 808–2138
FAX: (503) 808–2130
E-mail: pnw_pnwpubs@fs.fed.us
Mailing address: Publications Distribution
Pacific Northwest Research Station
P.O. Box 3890
Portland, OR 97208–3890

Federal Recycling Program
Printed on Recycled Paper