{ "currentVersion": 11.3, "serviceDescription": "
This product is part of the Landscape Change Monitoring System (LCMS) data suite. It shows LCMS modeled change classes for each year. See additional information about change in the Entity_and_Attribute_Information section below.<\/SPAN><\/P> LCMS is a remote sensing-based system for mapping and monitoring landscape change across the United States. Its objective is to develop a consistent approach using the latest technology and advancements in change detection to produce a \"best available\" map of landscape change. Because no algorithm performs best in all situations, LCMS uses an ensemble of models as predictors, which improves map accuracy across a range of ecosystems and change processes (Healey et al., 2018). The resulting suite of LCMS change, land cover, and land use maps offer a holistic depiction of landscape change across the United States over the past four decades.<\/SPAN><\/P> Predictor layers for the LCMS model include annual Landsat and Sentinel 2 composites, outputs from the LandTrendr and CCDC change detection algorithms, and terrain information. These components are all accessed and processed using Google Earth Engine (Gorelick et al., 2017). To produce annual composites, the cFmask (Zhu and Woodcock 2012), cloudScore, and TDOM (Chastain et al., 2019) cloud and cloud shadow masking methods are applied to Landsat Tier 1 and Sentinel 2a and 2b Level-1C top of atmosphere reflectance data. The annual medoid is then computed to summarize each year into a single composite. The composite time series is temporally segmented using LandTrendr (Kennedy et al., 2010; Kennedy et al., 2018; Cohen et al., 2018). All cloud and cloud shadow free values are also temporally segmented using the CCDC algorithm (Zhu and Woodcock, 2014). The raw composite values, LandTrendr fitted values, pair-wise differences, segment duration, change magnitude, and slope, and CCDC September 1 sine and cosine coefficients (first 3 harmonics), fitted values, and pairwise differences, along with elevation, slope, sine of aspect, cosine of aspect, and topographic position indices (Weiss, 2001) from the National Elevation Dataset (NED), are used as independent predictor variables in a Random Forest (Breiman, 2001) model. Reference data are collected using TimeSync, a web-based tool that helps analysts visualize and interpret the Landsat data record from 1984-present (Cohen et al., 2010).<\/SPAN><\/P> Outputs fall into three categories: change, land cover, and land use. Change relates specifically to vegetation cover and includes slow loss, fast loss (which also includes hydrologic changes such as inundation or desiccation), and gain. These values are predicted for each year of the Landsat time series and serve as the foundational products for LCMS.<\/SPAN><\/P> References:<\/SPAN><\/P> Breiman, L. (2001). Machine Learning (Vol. 45, Issue 3, pp. 261-277). https://doi.org/10.1023/a:1017934522171<\/SPAN><\/P> Chastain, R., Housman, I., Goldstein, J., Finco, M., and Tenneson, K. (2019). Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM top of atmosphere spectral characteristics over the conterminous United States. In Remote Sensing of Environment (Vol. 221, pp. 274-285). https://doi.org/10.1016/j.rse.2018.11.012<\/SPAN><\/P> Cohen, W. B., Yang, Z., and Kennedy, R. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync - Tools for calibration and validation. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2911-2924). https://doi.org/10.1016/j.rse.2010.07.010<\/SPAN><\/P> Cohen, W. B., Yang, Z., Healey, S. P., Kennedy, R. E., and Gorelick, N. (2018). A LandTrendr multispectral ensemble for forest disturbance detection. In Remote Sensing of Environment (Vol. 205, pp. 131-140). https://doi.org/10.1016/j.rse.2017.11.015<\/SPAN><\/P> Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. In Remote Sensing of Environment (Vol. 202, pp. 18-27). https://doi.org/10.1016/j.rse.2017.06.031<\/SPAN><\/P> Healey, S. P., Cohen, W. B., Yang, Z., Kenneth Brewer, C., Brooks, E. B., Gorelick, N., Hernandez, A. J., Huang, C., Joseph Hughes, M., Kennedy, R. E., Loveland, T. R., Moisen, G. G., Schroeder, T. A., Stehman, S. V., Vogelmann, J. E., Woodcock, C. E., Yang, L., and Zhu, Z. (2018). Mapping forest change using stacked generalization: An ensemble approach. In Remote Sensing of Environment (Vol. 204, pp. 717-728). https://doi.org/10.1016/j.rse.2017.09.029<\/SPAN><\/P> Kennedy, R. E., Yang, Z., and Cohen, W. B. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - Temporal segmentation algorithms. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2897-2910). https://doi.org/10.1016/j.rse.2010.07.008<\/SPAN><\/P> Kennedy, R., Yang, Z., Gorelick, N., Braaten, J., Cavalcante, L., Cohen, W., and Healey, S. (2018). Implementation of the LandTrendr Algorithm on Google Earth Engine. In Remote Sensing (Vol. 10, Issue 5, p. 691). https://doi.org/10.3390/rs10050691<\/SPAN><\/P> Weiss, A.D. (2001). Topographic position and landforms analysis Poster Presentation, ESRI Users Conference, San Diego, CA<\/SPAN><\/P> Zhu, Z., and Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. In Remote Sensing of Environment (Vol. 118, pp. 83-94). https://doi.org/10.1016/j.rse.2011.10.028<\/SPAN><\/P> Zhu, Z., and Woodcock, C. E. (2014). Continuous change detection and classification of land cover using all available Landsat data. In Remote Sensing of Environment (Vol. 144, pp. 152-171). https://doi.org/10.1016/j.rse.2014.01.011<\/SPAN><\/P><\/DIV><\/DIV><\/DIV>",
"name": "RDW_LandscapeAndWildlife/LCMS_Hawaii_Annual_Change",
"description": " This product is part of the Landscape Change Monitoring System (LCMS) data suite. It shows LCMS modeled change classes for each year. See additional information about change in the Entity_and_Attribute_Information section below.<\/SPAN><\/P> LCMS is a remote sensing-based system for mapping and monitoring landscape change across the United States. Its objective is to develop a consistent approach using the latest technology and advancements in change detection to produce a \"best available\" map of landscape change. Because no algorithm performs best in all situations, LCMS uses an ensemble of models as predictors, which improves map accuracy across a range of ecosystems and change processes (Healey et al., 2018). The resulting suite of LCMS change, land cover, and land use maps offer a holistic depiction of landscape change across the United States over the past four decades.<\/SPAN><\/P> Predictor layers for the LCMS model include annual Landsat and Sentinel 2 composites, outputs from the LandTrendr and CCDC change detection algorithms, and terrain information. These components are all accessed and processed using Google Earth Engine (Gorelick et al., 2017). To produce annual composites, the cFmask (Zhu and Woodcock 2012), cloudScore, and TDOM (Chastain et al., 2019) cloud and cloud shadow masking methods are applied to Landsat Tier 1 and Sentinel 2a and 2b Level-1C top of atmosphere reflectance data. The annual medoid is then computed to summarize each year into a single composite. The composite time series is temporally segmented using LandTrendr (Kennedy et al., 2010; Kennedy et al., 2018; Cohen et al., 2018). All cloud and cloud shadow free values are also temporally segmented using the CCDC algorithm (Zhu and Woodcock, 2014). The raw composite values, LandTrendr fitted values, pair-wise differences, segment duration, change magnitude, and slope, and CCDC September 1 sine and cosine coefficients (first 3 harmonics), fitted values, and pairwise differences, along with elevation, slope, sine of aspect, cosine of aspect, and topographic position indices (Weiss, 2001) from the National Elevation Dataset (NED), are used as independent predictor variables in a Random Forest (Breiman, 2001) model. Reference data are collected using TimeSync, a web-based tool that helps analysts visualize and interpret the Landsat data record from 1984-present (Cohen et al., 2010).<\/SPAN><\/P> Outputs fall into three categories: change, land cover, and land use. Change relates specifically to vegetation cover and includes slow loss, fast loss (which also includes hydrologic changes such as inundation or desiccation), and gain. These values are predicted for each year of the Landsat time series and serve as the foundational products for LCMS.<\/SPAN><\/P> References:<\/SPAN><\/P> Breiman, L. (2001). Machine Learning (Vol. 45, Issue 3, pp. 261-277). https://doi.org/10.1023/a:1017934522171<\/SPAN><\/P> Chastain, R., Housman, I., Goldstein, J., Finco, M., and Tenneson, K. (2019). Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM top of atmosphere spectral characteristics over the conterminous United States. In Remote Sensing of Environment (Vol. 221, pp. 274-285). https://doi.org/10.1016/j.rse.2018.11.012<\/SPAN><\/P> Cohen, W. B., Yang, Z., and Kennedy, R. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync - Tools for calibration and validation. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2911-2924). https://doi.org/10.1016/j.rse.2010.07.010<\/SPAN><\/P> Cohen, W. B., Yang, Z., Healey, S. P., Kennedy, R. E., and Gorelick, N. (2018). A LandTrendr multispectral ensemble for forest disturbance detection. In Remote Sensing of Environment (Vol. 205, pp. 131-140). https://doi.org/10.1016/j.rse.2017.11.015<\/SPAN><\/P> Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. In Remote Sensing of Environment (Vol. 202, pp. 18-27). https://doi.org/10.1016/j.rse.2017.06.031<\/SPAN><\/P> Healey, S. P., Cohen, W. B., Yang, Z., Kenneth Brewer, C., Brooks, E. B., Gorelick, N., Hernandez, A. J., Huang, C., Joseph Hughes, M., Kennedy, R. E., Loveland, T. R., Moisen, G. G., Schroeder, T. A., Stehman, S. V., Vogelmann, J. E., Woodcock, C. E., Yang, L., and Zhu, Z. (2018). Mapping forest change using stacked generalization: An ensemble approach. In Remote Sensing of Environment (Vol. 204, pp. 717-728). https://doi.org/10.1016/j.rse.2017.09.029<\/SPAN><\/P> Kennedy, R. E., Yang, Z., and Cohen, W. B. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - Temporal segmentation algorithms. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2897-2910). https://doi.org/10.1016/j.rse.2010.07.008<\/SPAN><\/P> Kennedy, R., Yang, Z., Gorelick, N., Braaten, J., Cavalcante, L., Cohen, W., and Healey, S. (2018). Implementation of the LandTrendr Algorithm on Google Earth Engine. In Remote Sensing (Vol. 10, Issue 5, p. 691). https://doi.org/10.3390/rs10050691<\/SPAN><\/P> Weiss, A.D. (2001). Topographic position and landforms analysis Poster Presentation, ESRI Users Conference, San Diego, CA<\/SPAN><\/P> Zhu, Z., and Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. In Remote Sensing of Environment (Vol. 118, pp. 83-94). https://doi.org/10.1016/j.rse.2011.10.028<\/SPAN><\/P> Zhu, Z., and Woodcock, C. E. (2014). Continuous change detection and classification of land cover using all available Landsat data. In Remote Sensing of Environment (Vol. 144, pp. 152-171). https://doi.org/10.1016/j.rse.2014.01.011<\/SPAN><\/P><\/DIV><\/DIV><\/DIV>",
"extent": {
"xmin": -1.78427163819E7,
"ymin": 2139038.749499999,
"xmax": -1.72266963819E7,
"ymax": 2544308.749499999,
"spatialReference": {
"wkid": 102100,
"latestWkid": 3857
}
},
"initialExtent": {
"xmin": -1.78427163819E7,
"ymin": 2139038.749499999,
"xmax": -1.72266963819E7,
"ymax": 2544308.749499999,
"spatialReference": {
"wkid": 102100,
"latestWkid": 3857
}
},
"fullExtent": {
"xmin": -1.78427163819E7,
"ymin": 2139038.749499999,
"xmax": -1.72266963819E7,
"ymax": 2544308.749499999,
"spatialReference": {
"wkid": 102100,
"latestWkid": 3857
}
},
"sortableFields": "MinPS,MaxPS,LowPS,HighPS,CenterX,CenterY,ZOrder,Shape_Length,Shape_Area,Year",
"bandCount": 1,
"pixelType": "U8",
"minValues": [],
"maxValues": [],
"meanValues": [],
"stdvValues": [],
"hasMultidimensions": false,
"timeInfo": {
"startTimeField": "BeginTime",
"endTimeField": "EndTime",
"timeExtent": [
473385600000,
1703980800000
],
"timeReference": null
},
"pixelSizeX": 30,
"pixelSizeY": 30,
"meanPixelSize": 30,
"datasetFormat": "AMD",
"uncompressedSize": 277393806,
"blockWidth": 2048,
"blockHeight": 256,
"compressionType": "None",
"bandNames": [
"Band_1"
],
"allowCopy": true,
"allowAnalysis": true,
"itemAccess": false,
"inspectionCapabilities": "",
"minPixelSize": 0,
"maxPixelSize": 0,
"copyrightText": "Funding for this project was provided by the U.S. Forest Service (USFS). RedCastle Resources, Inc. produced the dataset under contract to the USFS Geospatial Technology and Applications Center.",
"serviceDataType": "esriImageServiceDataTypeThematic",
"serviceSourceType": "esriImageServiceSourceTypeMosaicDataset",
"objectIdField": "OBJECTID",
"fields": [
{
"name": "OBJECTID",
"type": "esriFieldTypeOID",
"alias": "OBJECTID",
"domain": null
},
{
"name": "Shape",
"type": "esriFieldTypeGeometry",
"alias": "Shape",
"domain": null
},
{
"name": "Name",
"type": "esriFieldTypeString",
"alias": "Name",
"domain": null,
"length": 200
},
{
"name": "MinPS",
"type": "esriFieldTypeDouble",
"alias": "MinPS",
"domain": null
},
{
"name": "MaxPS",
"type": "esriFieldTypeDouble",
"alias": "MaxPS",
"domain": null
},
{
"name": "LowPS",
"type": "esriFieldTypeDouble",
"alias": "LowPS",
"domain": null
},
{
"name": "HighPS",
"type": "esriFieldTypeDouble",
"alias": "HighPS",
"domain": null
},
{
"name": "Category",
"type": "esriFieldTypeInteger",
"alias": "Category",
"domain": {
"type": "codedValue",
"name": "MosaicCatalogItemCategoryDomain",
"description": "Catalog item categories.",
"codedValues": [
{
"name": "Unknown",
"code": 0
},
{
"name": "Primary",
"code": 1
},
{
"name": "Overview",
"code": 2
},
{
"name": "Unprocessed Overview",
"code": 3
},
{
"name": "Partial Overview",
"code": 4
},
{
"name": "Inactive",
"code": 5
},
{
"name": "Uploaded",
"code": 253
},
{
"name": "Incomplete",
"code": 254
},
{
"name": "Custom",
"code": 255
}
],
"mergePolicy": "esriMPTDefaultValue",
"splitPolicy": "esriSPTDefaultValue"
}
},
{
"name": "Tag",
"type": "esriFieldTypeString",
"alias": "Tag",
"domain": null,
"length": 100
},
{
"name": "GroupName",
"type": "esriFieldTypeString",
"alias": "GroupName",
"domain": null,
"length": 100
},
{
"name": "ProductName",
"type": "esriFieldTypeString",
"alias": "ProductName",
"domain": null,
"length": 100
},
{
"name": "CenterX",
"type": "esriFieldTypeDouble",
"alias": "CenterX",
"domain": null
},
{
"name": "CenterY",
"type": "esriFieldTypeDouble",
"alias": "CenterY",
"domain": null
},
{
"name": "ZOrder",
"type": "esriFieldTypeInteger",
"alias": "ZOrder",
"domain": null
},
{
"name": "Shape_Length",
"type": "esriFieldTypeDouble",
"alias": "Shape_Length",
"domain": null
},
{
"name": "Shape_Area",
"type": "esriFieldTypeDouble",
"alias": "Shape_Area",
"domain": null
},
{
"name": "Year",
"type": "esriFieldTypeSmallInteger",
"alias": "Year",
"domain": null
},
{
"name": "BeginTime",
"type": "esriFieldTypeString",
"alias": "BeginTime",
"domain": null,
"length": 8
},
{
"name": "EndTime",
"type": "esriFieldTypeString",
"alias": "EndTime",
"domain": null,
"length": 8
}
],
"capabilities": "Image,Metadata,Catalog,Mensuration",
"defaultMosaicMethod": "Northwest",
"allowedMosaicMethods": "NorthWest,Center,LockRaster,ByAttribute,Nadir,Viewpoint,Seamline,None",
"sortField": "",
"sortValue": null,
"sortAscending": true,
"mosaicOperator": "First",
"maxDownloadSizeLimit": 2048,
"defaultCompressionQuality": 75,
"defaultResamplingMethod": "Nearest",
"maxImageHeight": 4100,
"maxImageWidth": 15000,
"maxRecordCount": 1000,
"maxDownloadImageCount": 20,
"maxMosaicImageCount": 20,
"allowRasterFunction": true,
"rasterFunctionInfos": [
{
"name": "Annual_Change",
"description": "A raster function template.",
"help": ""
},
{
"name": "None",
"description": "Make a Raster or Raster Dataset into a Function Raster Dataset.",
"help": ""
}
],
"rasterTypeInfos": [
{
"name": "Raster Dataset",
"description": "Supports all ArcGIS Raster Datasets",
"help": ""
}
],
"mensurationCapabilities": "Basic",
"hasHistograms": false,
"hasColormap": false,
"hasRasterAttributeTable": false,
"minScale": 0,
"maxScale": 0,
"exportTilesAllowed": false,
"supportsStatistics": true,
"supportsAdvancedQueries": true,
"editFieldsInfo": null,
"ownershipBasedAccessControlForRasters": null,
"allowComputeTiePoints": false,
"useStandardizedQueries": true,
"advancedQueryCapabilities": {
"useStandardizedQueries": true,
"supportsStatistics": true,
"supportsOrderBy": true,
"supportsDistinct": true,
"supportsPagination": true
},
"spatialReference": {
"wkid": 102100,
"latestWkid": 3857
}
}