{ "currentVersion": 11.3, "serviceDescription": "

This product is part of the Landscape Change Monitoring System (LCMS) data suite. It shows LCMS modeled land cover classes for each year. See additional information about land cover in the Entity_and_Attribute_Information or Fields section below.<\/span>LCMS is a remote sensing-based system for mapping and monitoring landscape change across the United States. Its objective is to develop a consistent approach using the latest technology and advancements in change detection to produce a \"best available\" map of landscape change. Because no algorithm performs best in all situations, LCMS uses an ensemble of models as predictors, which improves map accuracy across a range of ecosystems and change processes (Healey et al., 2018). The resulting suite of LCMS change, land cover, and land use maps offer a holistic depiction of landscape change across the United States over the past four decades.<\/span>Predictor layers for the LCMS model include outputs from the LandTrendr and CCDC change detection algorithms and terrain information. These components are all accessed and processed using Google Earth Engine (Gorelick et al., 2017). To produce annual composites, the cFmask (Zhu and Woodcock, 2012), cloudScore, Cloud Score + (Pasquarella et al., 2023), and TDOM (Chastain et al., 2019) cloud and cloud shadow masking methods are applied to Landsat Tier 1 and Sentinel 2a and 2b Level-1C top of atmosphere reflectance data. The annual medoid is then computed to summarize each year into a single composite. The composite time series is temporally segmented using LandTrendr (Kennedy et al., 2010; Kennedy et al., 2018; Cohen et al., 2018). All cloud and cloud shadow free values are also temporally segmented using the CCDC algorithm (Zhu and Woodcock, 2014). LandTrendr, CCDC and terrain predictors can be used as independent predictor variables in a Random Forest (Breiman, 2001) model. LandTrendr predictor variables include fitted values, pair-wise differences, segment duration, change magnitude, and slope. CCDC predictor variables include CCDC sine and cosine coefficients (first 3 harmonics), fitted values, and pairwise differences from the Julian Day of each pixel used in the annual composites and LandTrendr. Terrain predictor variables include elevation, slope, sine of aspect, cosine of aspect, and topographic position indices (Weiss, 2001) from the USGS 3D Elevation Program (3DEP) (U.S. Geological Survey, 2019). Reference data are collected using TimeSync, a web-based tool that helps analysts visualize and interpret the Landsat data record from 1984-present (Cohen et al., 2010).<\/span>Outputs fall into three categories: change, land cover, and land use. Change relates specifically to vegetation cover and includes slow loss (not included for PRUSVI), fast loss (which also includes hydrologic changes such as inundation or desiccation), and gain. These values are predicted for each year of the time series and serve as the foundational products for LCMS. <\/span>References: <\/span> Breiman, L. (2001). Random Forests. In Machine Learning (Vol. 45, pp. 5-32). https://doi.org/10.1023/A:1010933404324<\/span>Chastain, R., Housman, I., Goldstein, J., Finco, M., and Tenneson, K. (2019). Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM top of atmosphere spectral characteristics over the conterminous United States. In Remote Sensing of Environment (Vol. 221, pp. 274-285). https://doi.org/10.1016/j.rse.2018.11.012<\/span>Cohen, W. B., Yang, Z., and Kennedy, R. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync - Tools for calibration and validation. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2911-2924). https://doi.org/10.1016/j.rse.2010.07.010<\/span>Cohen, W. B., Yang, Z., Healey, S. P., Kennedy, R. E., and Gorelick, N. (2018). A LandTrendr multispectral ensemble for forest disturbance detection. In Remote Sensing of Environment (Vol. 205, pp. 131-140). https://doi.org/10.1016/j.rse.2017.11.015<\/span>Foga, S., Scaramuzza, P.L., Guo, S., Zhu, Z., Dilley, R.D., Beckmann, T., Schmidt, G.L., Dwyer, J.L., Hughes, M.J., Laue, B. (2017). Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sensing of Environment, 194, 379-390. http://doi.org/10.1016/j.rse.2017.03.026<\/span>Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. In Remote Sensing of Environment (Vol. 202, pp. 18-27). https://doi.org/10.1016/j.rse.2017.06.031<\/span>Healey, S. P., Cohen, W. B., Yang, Z., Kenneth Brewer, C., Brooks, E. B., Gorelick, N., Hernandez, A. J., Huang, C., Joseph Hughes, M., Kennedy, R. E., Loveland, T. R., Moisen, G. G., Schroeder, T. A., Stehman, S. V., Vogelmann, J. E., Woodcock, C. E., Yang, L., and Zhu, Z. (2018). Mapping forest change using stacked generalization: An ensemble approach. In Remote Sensing of Environment (Vol. 204, pp. 717-728). https://doi.org/10.1016/j.rse.2017.09.029<\/span>Helmer, E. H., Ramos, O., del MLopez, T., Quinonez, M., and Diaz, W. (2002). Mapping the forest type and land cover of Puerto Rico, a component of the Caribbean biodiversity hotspot. Caribbean Journal of Science, (Vol. 38, Issue 3/4, pp. 165-183)<\/span>Kennedy, R. E., Yang, Z., and Cohen, W. B. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - Temporal segmentation algorithms. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2897-2910). https://doi.org/10.1016/j.rse.2010.07.008<\/span>Kennedy, R., Yang, Z., Gorelick, N., Braaten, J., Cavalcante, L., Cohen, W., and Healey, S. (2018). Implementation of the LandTrendr Algorithm on Google Earth Engine. In Remote Sensing (Vol. 10, Issue 5, p. 691). https://doi.org/10.3390/rs10050691<\/span>Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., and Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. In Remote Sensing of Environment (Vol. 148, pp. 42-57). https://doi.org/10.1016/j.rse.2014.02.015<\/span>Pasquarella, V. J., Brown, C. F., Czerwinski, W., and Rucklidge, W. J. (2023). Comprehensive Quality Assessment of Optical Satellite Imagery Using Weakly Supervised Video Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 2124-2134)<\/span>Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. In Journal of Machine Learning Research (Vol. 12, pp. 2825-2830).<\/span>Pengra, B. W., Stehman, S. V., Horton, J. A., Dockter, D. J., Schroeder, T. A., Yang, Z., Cohen, W. B., Healey, S. P., and Loveland, T. R. (2020). Quality control and assessment of interpreter consistency of annual land cover reference data in an operational national monitoring program. In Remote Sensing of Environment (Vol. 238, p. 111261). https://doi.org/10.1016/j.rse.2019.111261<\/span>Pesaresi, Martino; Politis, Panagiotis (2023): GHS-BUILT-S R2023A - GHS built-up surface grid, derived from Sentinel2 composite and Landsat, multitemporal (1975-2030). European Commission, Joint Research Centre (JRC) PID: http://data.europa.eu/89h/9f06f36f-4b11-47ec-abb0-4f8b7b1d72ea doi:10.2905/9F06F36F-4B11-47EC-ABB0-4F8B7B1D72EA<\/span>Stehman, S.V. (2014). Estimating area and map accuracy for stratified random sampling when the strata are different from the map classes. In International Journal of Remote Sensing (Vol. 35, pp. 4923-4939). https://doi.org/10.1080/01431161.2014.930207<\/span>USDA National Agricultural Statistics Service Cropland Data Layer (2023). Published crop-specific data layer [Online]. Available at https://nassgeodata.gmu.edu/CropScape/ (accessed 2024). USDA-NASS, Washington, DC.<\/span>U.S. Geological Survey (2019). USGS 3D Elevation Program Digital Elevation Model, accessed August 2022 at https://developers.google.com/earth-engine/datasets/catalog/USGS_3DEP_10m<\/span>U.S. Geological Survey (2023). Landsat Collection 2 Known Issues, accessed March 2023 at https://www.usgs.gov/landsat-missions/landsat-collection-2-known-issues<\/span>Weiss, A.D. (2001). Topographic position and landforms analysis Poster Presentation, ESRI Users Conference, San Diego, CA<\/span>Yang, L., Jin, S., Danielson, P., Homer, C., Gass, L., Case, A., Costello, C., Dewitz, J., Fry, J., Funk, M., Grannemann, B., Rigge, M., and Xian, G. (2018). A New Generation of the United States National Land Cover Database: Requirements, Research Priorities, Design, and Implementation Strategies (https://www.sciencedirect.com/science/article/abs/pii/S092427161830251X), (pp. 108-123)<\/span>Zhu, Z., and Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. In Remote Sensing of Environment (Vol. 118, pp. 83-94). https://doi.org/10.1016/j.rse.2011.10.028<\/span>Zhu, Z., and Woodcock, C. E. (2014). Continuous change detection and classification of land cover using all available Landsat data. In Remote Sensing of Environment (Vol. 144, pp. 152-171). https://doi.org/10.1016/j.rse.2014.01.011 <\/span><\/p><\/div><\/div><\/div>", "name": "RDW_LandscapeAndWildlife/LCMS_CONUS_Annual_Landcover", "description": "

This product is part of the Landscape Change Monitoring System (LCMS) data suite. It shows LCMS modeled land cover classes for each year. See additional information about land cover in the Entity_and_Attribute_Information or Fields section below.<\/span>LCMS is a remote sensing-based system for mapping and monitoring landscape change across the United States. Its objective is to develop a consistent approach using the latest technology and advancements in change detection to produce a \"best available\" map of landscape change. Because no algorithm performs best in all situations, LCMS uses an ensemble of models as predictors, which improves map accuracy across a range of ecosystems and change processes (Healey et al., 2018). The resulting suite of LCMS change, land cover, and land use maps offer a holistic depiction of landscape change across the United States over the past four decades.<\/span>Predictor layers for the LCMS model include outputs from the LandTrendr and CCDC change detection algorithms and terrain information. These components are all accessed and processed using Google Earth Engine (Gorelick et al., 2017). To produce annual composites, the cFmask (Zhu and Woodcock, 2012), cloudScore, Cloud Score + (Pasquarella et al., 2023), and TDOM (Chastain et al., 2019) cloud and cloud shadow masking methods are applied to Landsat Tier 1 and Sentinel 2a and 2b Level-1C top of atmosphere reflectance data. The annual medoid is then computed to summarize each year into a single composite. The composite time series is temporally segmented using LandTrendr (Kennedy et al., 2010; Kennedy et al., 2018; Cohen et al., 2018). All cloud and cloud shadow free values are also temporally segmented using the CCDC algorithm (Zhu and Woodcock, 2014). LandTrendr, CCDC and terrain predictors can be used as independent predictor variables in a Random Forest (Breiman, 2001) model. LandTrendr predictor variables include fitted values, pair-wise differences, segment duration, change magnitude, and slope. CCDC predictor variables include CCDC sine and cosine coefficients (first 3 harmonics), fitted values, and pairwise differences from the Julian Day of each pixel used in the annual composites and LandTrendr. Terrain predictor variables include elevation, slope, sine of aspect, cosine of aspect, and topographic position indices (Weiss, 2001) from the USGS 3D Elevation Program (3DEP) (U.S. Geological Survey, 2019). Reference data are collected using TimeSync, a web-based tool that helps analysts visualize and interpret the Landsat data record from 1984-present (Cohen et al., 2010).<\/span>Outputs fall into three categories: change, land cover, and land use. Change relates specifically to vegetation cover and includes slow loss (not included for PRUSVI), fast loss (which also includes hydrologic changes such as inundation or desiccation), and gain. These values are predicted for each year of the time series and serve as the foundational products for LCMS. <\/span>References: <\/span> Breiman, L. (2001). Random Forests. In Machine Learning (Vol. 45, pp. 5-32). https://doi.org/10.1023/A:1010933404324<\/span>Chastain, R., Housman, I., Goldstein, J., Finco, M., and Tenneson, K. (2019). Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM top of atmosphere spectral characteristics over the conterminous United States. In Remote Sensing of Environment (Vol. 221, pp. 274-285). https://doi.org/10.1016/j.rse.2018.11.012<\/span>Cohen, W. B., Yang, Z., and Kennedy, R. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync - Tools for calibration and validation. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2911-2924). https://doi.org/10.1016/j.rse.2010.07.010<\/span>Cohen, W. B., Yang, Z., Healey, S. P., Kennedy, R. E., and Gorelick, N. (2018). A LandTrendr multispectral ensemble for forest disturbance detection. In Remote Sensing of Environment (Vol. 205, pp. 131-140). https://doi.org/10.1016/j.rse.2017.11.015<\/span>Foga, S., Scaramuzza, P.L., Guo, S., Zhu, Z., Dilley, R.D., Beckmann, T., Schmidt, G.L., Dwyer, J.L., Hughes, M.J., Laue, B. (2017). Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sensing of Environment, 194, 379-390. http://doi.org/10.1016/j.rse.2017.03.026<\/span>Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. In Remote Sensing of Environment (Vol. 202, pp. 18-27). https://doi.org/10.1016/j.rse.2017.06.031<\/span>Healey, S. P., Cohen, W. B., Yang, Z., Kenneth Brewer, C., Brooks, E. B., Gorelick, N., Hernandez, A. J., Huang, C., Joseph Hughes, M., Kennedy, R. E., Loveland, T. R., Moisen, G. G., Schroeder, T. A., Stehman, S. V., Vogelmann, J. E., Woodcock, C. E., Yang, L., and Zhu, Z. (2018). Mapping forest change using stacked generalization: An ensemble approach. In Remote Sensing of Environment (Vol. 204, pp. 717-728). https://doi.org/10.1016/j.rse.2017.09.029<\/span>Helmer, E. H., Ramos, O., del MLopez, T., Quinonez, M., and Diaz, W. (2002). Mapping the forest type and land cover of Puerto Rico, a component of the Caribbean biodiversity hotspot. Caribbean Journal of Science, (Vol. 38, Issue 3/4, pp. 165-183)<\/span>Kennedy, R. E., Yang, Z., and Cohen, W. B. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - Temporal segmentation algorithms. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2897-2910). https://doi.org/10.1016/j.rse.2010.07.008<\/span>Kennedy, R., Yang, Z., Gorelick, N., Braaten, J., Cavalcante, L., Cohen, W., and Healey, S. (2018). Implementation of the LandTrendr Algorithm on Google Earth Engine. In Remote Sensing (Vol. 10, Issue 5, p. 691). https://doi.org/10.3390/rs10050691<\/span>Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., and Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. In Remote Sensing of Environment (Vol. 148, pp. 42-57). https://doi.org/10.1016/j.rse.2014.02.015<\/span>Pasquarella, V. J., Brown, C. F., Czerwinski, W., and Rucklidge, W. J. (2023). Comprehensive Quality Assessment of Optical Satellite Imagery Using Weakly Supervised Video Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 2124-2134)<\/span>Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. In Journal of Machine Learning Research (Vol. 12, pp. 2825-2830).<\/span>Pengra, B. W., Stehman, S. V., Horton, J. A., Dockter, D. J., Schroeder, T. A., Yang, Z., Cohen, W. B., Healey, S. P., and Loveland, T. R. (2020). Quality control and assessment of interpreter consistency of annual land cover reference data in an operational national monitoring program. In Remote Sensing of Environment (Vol. 238, p. 111261). https://doi.org/10.1016/j.rse.2019.111261<\/span>Pesaresi, Martino; Politis, Panagiotis (2023): GHS-BUILT-S R2023A - GHS built-up surface grid, derived from Sentinel2 composite and Landsat, multitemporal (1975-2030). European Commission, Joint Research Centre (JRC) PID: http://data.europa.eu/89h/9f06f36f-4b11-47ec-abb0-4f8b7b1d72ea doi:10.2905/9F06F36F-4B11-47EC-ABB0-4F8B7B1D72EA<\/span>Stehman, S.V. (2014). Estimating area and map accuracy for stratified random sampling when the strata are different from the map classes. In International Journal of Remote Sensing (Vol. 35, pp. 4923-4939). https://doi.org/10.1080/01431161.2014.930207<\/span>USDA National Agricultural Statistics Service Cropland Data Layer (2023). Published crop-specific data layer [Online]. Available at https://nassgeodata.gmu.edu/CropScape/ (accessed 2024). USDA-NASS, Washington, DC.<\/span>U.S. Geological Survey (2019). USGS 3D Elevation Program Digital Elevation Model, accessed August 2022 at https://developers.google.com/earth-engine/datasets/catalog/USGS_3DEP_10m<\/span>U.S. Geological Survey (2023). Landsat Collection 2 Known Issues, accessed March 2023 at https://www.usgs.gov/landsat-missions/landsat-collection-2-known-issues<\/span>Weiss, A.D. (2001). Topographic position and landforms analysis Poster Presentation, ESRI Users Conference, San Diego, CA<\/span>Yang, L., Jin, S., Danielson, P., Homer, C., Gass, L., Case, A., Costello, C., Dewitz, J., Fry, J., Funk, M., Grannemann, B., Rigge, M., and Xian, G. (2018). A New Generation of the United States National Land Cover Database: Requirements, Research Priorities, Design, and Implementation Strategies (https://www.sciencedirect.com/science/article/abs/pii/S092427161830251X), (pp. 108-123)<\/span>Zhu, Z., and Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. In Remote Sensing of Environment (Vol. 118, pp. 83-94). https://doi.org/10.1016/j.rse.2011.10.028<\/span>Zhu, Z., and Woodcock, C. E. (2014). Continuous change detection and classification of land cover using all available Landsat data. In Remote Sensing of Environment (Vol. 144, pp. 152-171). https://doi.org/10.1016/j.rse.2014.01.011 <\/span><\/p><\/div><\/div><\/div>", "extent": { "xmin": -1.42463587702E7, "ymin": 2604056.207800001, "xmax": -7264068.770199999, "ymax": 6736796.207800001, "spatialReference": { "wkid": 102100, "latestWkid": 3857 } }, "initialExtent": { "xmin": -1.42463587702E7, "ymin": 2604056.207800001, "xmax": -7264068.770199999, "ymax": 6736796.207800001, "spatialReference": { "wkid": 102100, "latestWkid": 3857 } }, "fullExtent": { "xmin": -1.42463587702E7, "ymin": 2604056.207800001, "xmax": -7264068.770199999, "ymax": 6736796.207800001, "spatialReference": { "wkid": 102100, "latestWkid": 3857 } }, "sortableFields": "", "bandCount": 1, "pixelType": "U8", "minValues": [], "maxValues": [], "meanValues": [], "stdvValues": [], "hasMultidimensions": false, "timeInfo": { "startTimeField": "BeginTime", "endTimeField": "EndTime", "timeExtent": [ 473385600000, 1703980800000 ], "timeReference": null }, "pixelSizeX": 30, "pixelSizeY": 30, "meanPixelSize": 30, "datasetFormat": "AMD", "uncompressedSize": 32062210194, "blockWidth": 2048, "blockHeight": 256, "compressionType": "None", "bandNames": [ "Band_1" ], "allowCopy": true, "allowAnalysis": true, "itemAccess": false, "inspectionCapabilities": "", "minPixelSize": 0, "maxPixelSize": 0, "copyrightText": "Funding for this project was provided by the U.S. Forest Service (USFS). RedCastle Resources, Inc. produced the dataset under contract to the USFS Geospatial Technology and Applications Center.", "serviceDataType": "esriImageServiceDataTypeThematic", "serviceSourceType": "esriImageServiceSourceTypeMosaicDataset", "objectIdField": "OBJECTID", "fields": [ { "name": "OBJECTID", "type": "esriFieldTypeOID", "alias": "OBJECTID", "domain": null }, { "name": "Shape", "type": "esriFieldTypeGeometry", "alias": "Shape", "domain": null }, { "name": "Name", "type": "esriFieldTypeString", "alias": "Name", "domain": null, "length": 200 }, { "name": "MinPS", "type": "esriFieldTypeDouble", "alias": "MinPS", "domain": null }, { "name": "MaxPS", "type": "esriFieldTypeDouble", "alias": "MaxPS", "domain": null }, { "name": "LowPS", "type": "esriFieldTypeDouble", "alias": "LowPS", "domain": null }, { "name": "HighPS", "type": "esriFieldTypeDouble", "alias": "HighPS", "domain": null }, { "name": "Category", "type": "esriFieldTypeInteger", "alias": "Category", "domain": { "type": "codedValue", "name": "MosaicCatalogItemCategoryDomain", "description": "Catalog item categories.", "codedValues": [ { "name": "Unknown", "code": 0 }, { "name": "Primary", "code": 1 }, { "name": "Overview", "code": 2 }, { "name": "Unprocessed Overview", "code": 3 }, { "name": "Partial Overview", "code": 4 }, { "name": "Inactive", "code": 5 }, { "name": "Uploaded", "code": 253 }, { "name": "Incomplete", "code": 254 }, { "name": "Custom", "code": 255 } ], "mergePolicy": "esriMPTDefaultValue", "splitPolicy": "esriSPTDefaultValue" } }, { "name": "Tag", "type": "esriFieldTypeString", "alias": "Tag", "domain": null, "length": 100 }, { "name": "GroupName", "type": "esriFieldTypeString", "alias": "GroupName", "domain": null, "length": 100 }, { "name": "ProductName", "type": "esriFieldTypeString", "alias": "ProductName", "domain": null, "length": 100 }, { "name": "CenterX", "type": "esriFieldTypeDouble", "alias": "CenterX", "domain": null }, { "name": "CenterY", "type": "esriFieldTypeDouble", "alias": "CenterY", "domain": null }, { "name": "ZOrder", "type": "esriFieldTypeInteger", "alias": "ZOrder", "domain": null }, { "name": "Shape_Length", "type": "esriFieldTypeDouble", "alias": "Shape_Length", "domain": null }, { "name": "Shape_Area", "type": "esriFieldTypeDouble", "alias": "Shape_Area", "domain": null }, { "name": "Year", "type": "esriFieldTypeSmallInteger", "alias": "Year", "domain": null }, { "name": "BeginTime", "type": "esriFieldTypeString", "alias": "BeginTime", "domain": null, "length": 8 }, { "name": "EndTime", "type": "esriFieldTypeString", "alias": "EndTime", "domain": null, "length": 8 } ], "capabilities": "Image,Metadata,Catalog,Mensuration", "defaultMosaicMethod": "Northwest", "allowedMosaicMethods": "NorthWest,Center,LockRaster,ByAttribute,Nadir,Viewpoint,Seamline,None", "sortField": "", "sortValue": null, "sortAscending": true, "mosaicOperator": "First", "maxDownloadSizeLimit": 2048, "defaultCompressionQuality": 75, "defaultResamplingMethod": "Nearest", "maxImageHeight": 4100, "maxImageWidth": 5000, "maxRecordCount": 1000, "maxDownloadImageCount": 20, "maxMosaicImageCount": 45, "allowRasterFunction": true, "rasterFunctionInfos": [ { "name": "Annual_Landcover", "description": "A raster function template.", "help": "" }, { "name": "None", "description": "Make a Raster or Raster Dataset into a Function Raster Dataset.", "help": "" } ], "rasterTypeInfos": [ { "name": "Raster Dataset", "description": "Supports all ArcGIS Raster Datasets", "help": "" } ], "mensurationCapabilities": "Basic", "hasHistograms": false, "hasColormap": false, "hasRasterAttributeTable": false, "minScale": 0, "maxScale": 0, "exportTilesAllowed": false, "supportsStatistics": true, "supportsAdvancedQueries": true, "editFieldsInfo": null, "ownershipBasedAccessControlForRasters": null, "allowComputeTiePoints": false, "useStandardizedQueries": true, "advancedQueryCapabilities": { "useStandardizedQueries": true, "supportsStatistics": true, "supportsOrderBy": true, "supportsDistinct": true, "supportsPagination": true }, "spatialReference": { "wkid": 102100, "latestWkid": 3857 } }